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ABSTRACT 

The problem of deciding when to apply guidance corrections to the 
perturbed trajectory of a spacecraft is treated from the dynamic pro- 
gramming point of view. It is assumed that the objective of the guid- 
ance correction policy is to minimize the expected value of the squared 
error at the final time, subject to the constraint that the total-correction 
capability expended be less than some specified value. It is shown that 
a correction should be performed when a certain switching function 

passes through zero. Assuming that the orbit determination procedure 
has been prespecified, and that the statistics of the correction errors 
are known, the switching function is found to depend upon the in- 
stantaneous state of the system, which is composed of: ( 1 ) the estimate 
of the trajectory perturbation to be corrected, (2)  the variance of the 
error in this estimate, and (3) the correction capability of the space- 
craft. Equations for computing the switching function are derived, 
and a numerical example is presented. 

1. INTRODUCTION 

A spacecraft traversing a coast trajectory toward some 
target region in space is guided to its final destination 
by applying one or more small velocity impulse correc- 
tions (maneuvers) at certain times along the path to null 
the predicted target error. The prediction (estimate) of 
the target error is achieved by an orbit determination 
process; the required corrections are computed using 
linear perturbation theory, and the impulse is delivered 
by a rocket motor, which applies an acceleration to the 
spacecraft for a relatively short period of time. The se- 
lection of times for performing the velocity corrections 

to the orbit, and the determination of what fraction of 
the predicted target error is to be nulled by each correc- 
tion is termed the guidance policy. It is the purpose of 
this Report to develop a guidance policy that will min- 
imize the expected value of the squared target error, 
subject to the constraint that the total propellant ex- 
pended in performing the corrections is less than some 
prespecified amount. 

Defining the guidance policy is an easy task if the 
orbit is perfectly known, if the correction can be made 
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perfectly, and if there is adequate correction capability 
(propellant). Otherwise the policy is not readily con- 
structed. There are factors that tend to cause a maneuver 
to be made early, such as the smaller amount of correc- 
tion capability required to null a given target error; and 
there are factors that tend to cause it to be made late, 
such as the need to process more data to get a better 
estimate of the orbit. The random errors arising in the 
execution of the correction must be considered, since 
they affect the uncertainty in the knowledge of the orbit 
parameters. The problem, then, is to develop a guidance 
policy that will allot the given correction capability in 
a way that will cause some performance index to be 
minimized, taking into account the uncertainty arising 
from orbit determination and execution errors. 

The theory concerning the single-impulse correction is 
well known (Ref. 1) and was implemented in the success- 
ful Mariner ZI fly-by mission to the planet Venus (Ref. 2). 
In this case, a suitable single maneuver time is chosen 
from preflight studies of orbit determination and execu- 
tion error statistics, and the correction capability to be 
carried aboard the spacecraft is determined by mapping 
the covariance matrix of injection guidance errors to the 
selected maneuver point to obtain the covariance matrix 
of velocity-to-be-gained components. The situation be- 
comes much more complex when more than one maneu- 
ver is considered, for then the future guidance and 
tracking policy must be considered in performing a cor- 
rection at any given time. It becomes necessary, in gen- 

eral, to consider both the present and future uncertainty 
in the knowledge of the orbit and the errors in the 
measurement devices being used to determine the orbit. 
The target error criterion and desired accuracy must be 
defined, as well as the bound on the total velocity cor- 
rection that can be applied. This important inquiry has 
recently received considerable attention by treating it 
as an optimization problem and has been attacked from 
several different points of view by Battin, Breakwell, 
Striebel, and Lawden (Ref. 3 through 6, respectively). 
The analysis presented here approaches the problem from 
the dynamic programming point of view (Ref. 7), defining 
an optimal policy as one which minimizes the mean 
squared target error, subject to constraints on the total 
correction capability that can be allotted. The guidance 
policy is adaptive in the sense that at any decision time 
ti it is dependent upon the estimate of the error to be 
corrected; the uncertainty in this estimate; and the cor- 
rection capability available-all of which are time vary- 
ing random variables over the ensemble of all perturbed 
trajectories. 

The nomenclature used is as follows: A bold face letter 
represents a column vector; a matrice is denoted by a 
capital letter; an asterisk indicates an estimated quan- 
tity; the symbol E [ -1 indicates the statistical expecta- 
tion (average value) over all similar experiments of the 
quantity in brackets; the notation [x 1 y ]  means the value 
x given that y occurs; and the word uncertainty is used 
synonymously with the word uariance. 

II. SUMMARY 

An idealized guidance problem is defined, assuming that 
a series of velocity impulse corrections are to be applied 
to the trajectory of the spacecraft while it is traveling in 
a straight line toward impact on a massless planet. The 
equations describing the orbit determination and guid- 
ance correction(s) applied are presented. It is assumed 
that the orbit determination policy is prespecified, i.e., 
the types of observed datz to be gathered throughout the 
entire mission, and the times for making these observa- 
tions, are known from preflight studies and do not depend 
upon the guidance policy. The statistics of the errors 
arising from executing the corrections are assumed known. 

The performance index pi to be minimized at any time 
ti  is defined as the expected value of the sum of the 
orbit determination uncertainty immediately after the 
final correction (at prespecified final time t,) plus the 
square of the error uncorrectable because of depleting 
the correction capability prior to t f ,  i.e., 

p i  = E [/3r + r2 1 all corrections t i  - -  t f ]  Pi 

where /3, is the final orbit determination variance, and T 

is the estimate of the target error immediately following 
the correction at t f .  The case T # 0 occurs when there 

2 
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is insuf6cient correction capability at t,, and total cor- 
rection of the estimated error cannot be made. The 
motivation for choosing this particular performance 
index is given in Section IV. 

A sequence of decision times ti < t f  is defined along 
the trajectory, where the possibihty of pedorming a 
correction is to be examined. The state of the system x 
at any time ti is considered to be composed of 

1. The minimum variance estimate (prediction) of the 
uncorrected target error mT, which is obtained 
from the orbit determination process by considering 
all data (including the a priori estimate) gathered 
prior to ti .  

2. The variance of the error in this estimate. 

3. The amount of velocity correction capability that 
can be allotted to the remainder of the mission. 

The optimization problem is formulated from the dy- 
namic programming point of view, and it is assumed that 
at each time t i  there will be either total correction or no 
correction. This restricted optimal guidance policy is 
implemented at time ti in the following steps. 

1. Calculate the performance index corresponding to 

[pi I i, f ]  = E [PI  + r' I corrections only at 

total corrections only at ti and t,, i.e., 

t i  and t,] (2) 

2. Calculate the performance index corresponding to a 

[pi I 0, f ]  = E [P, + r2 I correction only at t,] 

total correction only at t,, i.e., 

(3) 

3. If [pi I i, f ]  - [pi I 0, f]  > 0 make no correction at 
ti, go on to next decision time ti+l. If the inequality 
does not hold go on to Step 4. 

total corrections only at ti+l and t,, i.e., 
4. Calculate the performance index corresponding to 

[ p i  I i + 1, f ]  = E [P, + r2 I corrections only 

at ti+l and t,] (4) 

This computation is made possible at ti by recogniz- 
ing that the expected value of the estimate of the 
target error m:+l at ti+l is the current estimate, i.e., 

E [m:+, I no correction at t i ]  = m: 

The orbit determination uncertainties at ticl can be 
computed. 

5. Form the switching function 

si = [pi I i, f l  - [pi I i + 1, f l  (5) 

If si is positive no action is taken. If it is negative 
or zero a total correction is applied at ti. 

6. When the next decision time is reached the process 
is reinitiated, this time with a new estimate of the 
error m:+l, based upon the action taken at t i ,  and 
the tracking data received during the interval. 

The case of insufficient correction capability to accom- 
plish the mission and the case of a limited number of 
corrections are discussed. Numerical results are pre- 
sented, and the extension to the more general case is 
discussed. 

111. DESCRIPTION OF THE IDEALIZED GUIDANCE PROBLEM 

The essential ideas of this Report are developed by 
considering the idealized one-dimensional problem de- 
scribed below. In Section VI11 the extension of the prob- 
lem to the more general case is discussed. 

at known speed V toward a massless target, and the time- 
to-go to closest approach is known. A series of velocity 
impulse corrections perpendicular to the direction of 
motion can be accomplished at any or all of the pre- 
specified decision times (to, t l ,  . . . t,), where to is the 
start of the problem and t, is the final time. The objective 
of the guidance system is to minimize the expected value 

The one-dimensional problem is constructed by imag- 
ining that the spacecraft is moving in a zero-gravity field 



JPL TECHNICAL REPORT NO. 32-513 

STAR 

k 
because of the random execution errors that arise in 
accomplishing the correction. Thus, 

ACTUAL ~RAJECTORY V 
\ Pi is the target error variance immediately after the cor- 

rection at ti. 

E [a'] is the variance of the proportional type of exe- 
cution error (expressed as a decimal fraction). 

NOMINAL TRAJECTORY PLANET 

Fig. 1. The idealized guidance problem 

of the final squared target error (Fig. 1). The correction 
made at t ,  is 

ut = - (--) d,m: 

E [b']  is the variance of the nonproportional type of 
velocity execution error (expressed in m2/sec2). 

The assumption will be made that the execution error 
causes a transverse position displacement without affect- 
ing the uncertainty in the direction of the velocity vector, 
thereby simplifying the subsequent orbit determination 
process. If a correction is made at t ,  the quantity P, is 
substituted for a, in Eq. (6) and (7). 

(6) 

where 

m,* is the estimate of the target error at ta, obtained 
from the orbit determination process. 

For the purpose of the subsequent analysis it is neces- 
sary to predict the orbit determination uncertainty at t,, 

and considering the orbit determination data which are 

[oa 1 i 7 f ]  = E [a, 1 corrections at t ,  and t , ]  

I 

is the time-to-go to closest approach at t ,; thus = given that total corrections are made only at ta and tf7 

tclosest approach - 
I to be gathered between ta  and t,. This quantity is 

d,  is the decision variable, which determines the fraction 
of the estimate to be nulled at t ,  (0 2 d,  5 1). 

Between any two decision times ti, ti+l the minimum 
variance estimate of the target error Am: is obtained 
from the orbit determination process in the interval. The 
variance of the error in that estimate is y i .  If m: was the 
previously obtained minimum variance estimate at ti, 
with variance ai, the combined estimate at ti+l is 

The variance of the combined estimate is 

At time to the m: and ai are the a priori values. 

If a correction is made at ti there will be further un- 
certainty added to the knowledge of the target error 

=[++;I 1 - 1 -  -[*I 
where p i  is the variance of the error in the estimate corre- 
sponding to the data gathered between ti and t f ,  given by 

i -1 
f 

Pi' = Y I' (11) 
3=2 

The variance of the estimate at tf (as distinguished from 
the error in the estimate) predicted at ti, is (Ref. 8)  

[4i I i,f] = E[mT I correction only at t i ]  

The quantities mi and qi for the case of corrections only 
at t,, or only at ti+l, are obtained in a similar fashion, as 
described in Section VI. The use of these results for 
determining the optimal policy is developed below. 

4 
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IV. THE PERFORMANCE INDEX 

The performance index defined by Eq. (1) is the 
expected value of the squared target error at the final 
time tf .  The motivation for choosing this particular cri- 
terion is that the resuitant guidance poiicy eiiectively 
maximizes the probability that the final target error will 
be within some limits * I if it is assumed that the final 
residual error is always small relative to its standard 
deviation. This conclusion is verified below. 111 \ I 

Suppose r and Y [ v  = (Pf)" ]  are, respectively, the -I 0 + I  
mean and standard deviation of the normal distribution 
of the final target error mf (Fig. 2). Then Fig. 2. The biased probability density function 

+ (5) 
Prob(-I  < m , < I ) =  f ( z ) d z  (13) J,, 

where I is a given limit, and 

1 f (2)  = - 
(%)% exp - (G) 

If r is assumed to be always small relative to Y, Eq. (15) 
may be written' 

Prob (- I 5 mf I I) = 

For any given value of I expression (17) is clearly maxi- 
mized by minimizing p. Since only the expected value 
of p can be computed at ti, the penalty function given by 
Eq. (14) is a reasonable one. It should be noted, how- 
ever, that assuming r small is not equivalent to assum- 
ing E [ r Z ]  small. 

' This equiualence of bias and standard deviation was pointed out 
in an unpublished paper by T. W. Hamilton of the Jet Propulsion 
Laboratory. 

Anticipating the analysis to follow, suppose a total 
correction (di = 1) is made at t i ,  and consider the eval- 
uation of the expected value of pi given that there are 
no further corrections until tf. 

The correction capability remaining to be applied at 
the final time t f  then becomes 

Cf = c(t,) = C ( t i )  - (Z) 
Any estimate m: 2 cf  T I  can be nulled at t f ,  resulting in 
r (m?), as shown in Fig. 3. Thus, the expected value of r2, 
evaluated at ti, is 

E [r' 1 corrections at ti and t f ]  

= 2!Pi1m f(z) (2-A)' dz (18) 
where 

I 
I 
I 

/ 1 CORRECTABLE 
ERROR 

Fig. 3. The residual error at the final time 
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and *i is defined by Eq. (12). Thus, the expected value 
of p i  evaluated at ti by assuming a total correction at ti 

where the residual function is (Fig. 4) 

and tf ,  is g(h) = 2 j m  f(z)(z-h)? dz (21) 
A 

and wi is defined by Eq. (10). The calculation of pi for 
corrections only at t,, or only at t i+ l  and t f ,  is made in a 
similar fashion, as will be described in Section VI. 

[ p i  I i , f ]  = *i g (h i )  + w i  + * i  E [a2]  + T;  E [ b 2 ]  

(20) 

I (  

0.71 

- 
4 

O.! 

0 .2 !  

I 

I 

x 
Fig. 4. The residual function 

6 
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V. THE DYNAMIC PROGRAMMING FORMULATION 

The guidance policy, which minimizes the penalty 
function discussed in the previous section, can be formu- 
lated by invoking the principle of optimality of dynamic 
programming (Ref. 7), which states: An optimal policy 
has the property that whatever the initial state and initial 
decision is, the remaining decisions must constitute an 
optimal policy with regard to the state resulting from the 
first decision. 

This principle is applied here by imagining a set of 
tables at each time ti which presents the minimum 
value of the performance index p i  and the associated 
decision variable di as a function of the state-variables 
of the system, which are the predicted target error n*, 
the variance of the error in this estimate a and the cor- 
rection capability e. These tables would be constructed by 
working backwards from the final time, at each ti con- 
sidering all conceivable combinations of state-variables. 
At each t i  the decision and penalty are arrived at by 
finding the decision that will transfer the state to the 
subsequent decision time ti+l in such a way as to obtain 
minimum pi+*, which is evaluated by interpolating the 
state-variables in the previously computed table at ti+l. 
The mathematical formulation is as follows: Let 

di  = the decision at ti ,  i.e., the fraction of the esti- 
mated miss to be corrected (0 5 d 5 1) 

xi = the state of the system at time ti ,  i.e., 

E [ ~ ~ + ~ l x i ,  di] = the expected value of the state xi+] 
which follows from making the decision di at the time 
t i ,  starting in state x i .  

p i  (min) = the value of the performance index result- 
ing from starting in state x i  at t i  and employing an 
optimal policy until the final time t,. 

If the trajectory is divided into a sequence of decision 
times 

(to, tl, . - -, ti ,  . . ., tr) 
where the option of making a correction is available, 
thenZ 

where the quantity in braces is evaluated as a function 
of E [ x i + ]  Ixi, a i ] ,  which is obtained from 

E [n?+,] = (1-6) m f  (24) 

The ai, P i ,  and y i  are defined in Section 111. At the h a 1  
time t f ,  

The process of generating the tabular function p i  (min) 
and the associated decision variable d; as a function of 
the three state variables and the time could present a 
difficult computational problem, but it is shown below 
that the guidance policy can be approximately deter- 
mined quite simply if certain restrictions are imposed. 

It is assumed that there is sufficient correction capability at t ,  to 
perform a total correction, i.e., d, = 1 is a legitimate case. The 
case of insufficient correction capability is discussed in Section VII. 

7 
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VI. DETERMINATION OF THE 

The optimal guidance policy can be determined rela- 
tively simply at each decision time t i  if the following 
restrictions are imposed: 

1. All of the estimated (predicted) target error is to be 
nulled each time a correction is made; that is, no 
partial corrections are allowed. 

2. It is to be assumed at each decision time ti that an 
estimated target error of zero (such as would occur 
immediately after nulling the estimate) implies that 
no further corrections will be required until the final 
time tJ. 

Thus, each decision is based upon total- and two- 
correction policy, where: 

Definition 1: A total-correction policy assumes at each 
decision time ti that either no correction (di = 0) or total 
correction (di = 1) is to be accomplished. 

Definition 23: A two-correction policy assumes at each 
decision time ti that at most two corrections will be 
accomplished: one at the final decision time tf  and 
another at some time tj < t f .  

These restrictions are suggested by present practice 
in the guidance of space vehicles, where reliability con- 
siderations demand that the guidance policy call for a 
minimum number of corrections. To reduce the proba- 
bility of requiring added corrections it is clearly best 
always to null all the error each time a correction is 
made. Since the resultant target estimate is then zero, 
it is reasonable to expect that no further corrections 
would be required before the final time; or, equivalently, 
that any such corrections and the corresponding propor- 
tional execution error and correction capability expendi- 
ture would be negligibly small. 

With the total- and two-correction restrictions it fol- 
lows that 

Note that more than two corrections on any given trajectory may 
be performed, for the two-correction policy is reapplied at t,+l even 
if d ,  = 1. The new orbit determination information obtained after 
t ,  may demand still another correction before tf. 

RESTRICTED OPTIMAL POUCY 

[ P i I O > f ]  

pi (mi4 2 [pi I i, f ]  (29) 1 [Pi ( i + l , f ]  

where the elements of inequality (29) are defined by 
Eq. (2)-(4). The [pi I i, f ]  is calculated directly from 
Eq. (20). The [pi I i+  1, f ]  is also calculated from Eq. (20) 
but with the state variables at ti+* obtained from Eq. 
(=)-(a); and the [pi IO, f ] ,  also calculated from Eq. (20), 
has the execution errors at ti set equal to zero (pi = ai) 

and 

[*i 10, f ]  = [*I3 I t f ]  + (m:)* (30) 

Equation (30) calls upon the approximate equivalence 
between bias and standard deviation developed in Sec- 
tion IV. Equation (29) immediately establishes Step 3 
of the guidance policy described in Section 11, where 
the decision di = 0 has arbitrarily been selected when the 
equality holds in order to minimize the number of cor- 
rections. If Step 3 does not apply it follows that 

pi(min) = [pi I i , f ]  2 [ p i  I i + l ,  f ]  (31) 

Defining switching function si by Eq. (5 )  it follows 
that si 5 0 is a necessary condition that di = 1 be the 
optimal decision. Assuming that there exists only one 
decision time which yields a minimum value of the per- 
formance index for the given state x,, the guidance 
policy described in Section I1 is established. For the 
explicit steps carried out in the determination of the 
decision at each time ti refer to Table 1. (It should be 
noted that the effect of following this guidance policy 
can be determined only from a Monte-Carlo simulation 
of the ensemble of all trajectories, since the each decision 
di depends upon the random value of the state at ti.) 

if di = 1 

This guidance policy is approximately optimal in the 
unrestricted sense of Section V above, for: 

A total correction of the target error is approxi- 
mately optimal if a two-correction policy is assumed 
and if (a) the time-to-go when the correction is made 
( T ~ )  is large compared to the time-to-go at the final 
time (T,), and/or if (b) the estimate at the decision 
time ti is large compared to the standard deviation of 
estimate at the final time tJ. 

8 
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Table 1. The guidance policy logic4 

Enter a t  t ime ti, where  to < tc < tl. Let ~i = TO - ;At. 

Proceed as follows: 

A. O r b i t  determinotion computotions 

3 -1 

s;' = rp 
I* 

B. Computation of simulated es t imate  (See Port IX) 

,%  mi - k ( ~ -  a , )  .- 
C. Test f o r  propellant depletion (See Part  VII) 

A, = C T ,  - m ;  

if Ai 5 0 Go t o  propellant depletion m o d e  of opera t ion  (part  VII). 

i t  Ai > 0 Continue 

E. Penalty f o r  n o  correction until tl  

F. Test for  no correction a t  ti 

[pi I i, f ]  - [pi I 0, f l  2 0 Make n o  correction. Go t o  t ime ti+%. 

Restart computations 

[p< I i, f ]  - [pi  IO,  f] < o Continue 

G. Predicted penal ty  for  correction a t  ti+, 

H. Test for correction a t  t i  
~~ ~ ~ ~ ~~ ~ 

[pi I i, f ]  - [pi 1 i 4- 1, f ]  > 0 Make n o  correction. Go to time tc+l ana 
restart  computotions 

[p, I i, f ]  - [pc I i f 1, f] 5 0 Continue (make  correction) 
~~ ~ 

1. Effect of correction a t  1, 

v i  = (m f) ( ~ 1 j - I  

e = c - v ' (  

ai = pi 
Go t o  t ime ti+]. Rertort computations 

This statement asserts that a total correction is ap- 
proximately optimal if the correction is made relatively 
early and/or if the quality of the precorrection orbit 
determination data is significantly better than that of the 
postcorrection data. To show this, suppose that the effect 
of proportional execution error is negligible and that a 

' See Table 3 for nomenclature. 

two-correction policy is assumed. If a partial correction 
is made at decision time ti the performance index be- 
comes 

1 
g(Ai(+))  + T g ( ~ i ( - ) ) ]  + oi 

(32) 

9 
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where 

(34) 

and, since the execution errors are to be neglected, q i  

is given by Eq. (12). If the correction is to be optimal it 
is necessary that (api /adi )  = 0, which in the interval 0 5 
di 5 1, be expanded in Taylor series about di  = 1 to 
obtain 

where Adi = (di - 1). But, from Eq. (32)-(34) 

Solving for Adi from Eq. (35), 

1 Adi = -(yz my2 (+)[[ f(z)(z--h)dz 

Eq. (38) shows that di + 1 as *Jmf2+ 0 and/or T , / T ~  + 0, 
which establishes the stated result. (From L’Hospital’s 
rule it can be verified that the ratio of the integral terms 
in Eq. (38) goes to zero as A goes to infinity.) 

An alternate approach to justifying the restricted guid- 
ance policy is to treat the residual target error to be 
corrected at the final time as the sum of the absolute 
values of the error left uncorrected at ti (because di < 1) 
and the random error accumulated between ti and t f .  
This treatment leads to the conclusion that an optimal 
two-correction policy is always a total-correction policy, 
but would yield a pessimistic value for the correction 
capability utilized by a partial-correction policy. 
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VII. THE DEPLETION MODE OF OPERATION 

It is assumed above that at each decision time ti there 
is sufficient propulsion capability to perform a total cor- 
rection, and that an unlimited number of corrections can 
be made during the remainder of the mission. Neither 
of these conditions are guaranteed, however; for it is 
possible to deplete the propellant reserves, and engineer- 
ing constraints may limit the total number of corrections. 

Definitwn 3. The depletion mode of operation occurs 
at ti when 

m* 
n < 2 and/or c < - 

where n is the total number of corrections that can be 
performed at decision times ti, 

T i  

* t j .  

Without further justification, the following intuitively 
obvious policy will be adopted: 

The Depletion Policy. The optimal policy for the 
depletion mode of operation is to correct as much of the 
error as possible at ti when si 5 0, where 

si = [Pi + (ri)'] - [Bi+l + (ri+I)*] 

and 

0 if c T ;  2 m* 
r i = { m * - c i i i f c T i < m *  

c = correction capability at t i  

m* = estimate of target error at ti 

Pi = uncertainty resulting from orbit 
determination and execution errors, 
assuming a correction only at ti 

The quantities ri+l and 
that n effectively becomes a new state-variable. 

are similarly defined. Notice 

VIII. EXTENSION TO MULTIPLE DIMENSIONS 

The analysis has, thus far, considered only the simple 
case where one miss-component need be dealt with; but, 
in general, it is necessary to estimate all random variables 
that affect the observed data in order to obtain a mini- 
mum variance estimate of the orbit parameters (Ref. 9). 
Thus, all position and velocity components must be 
estimated, as well as unknown biases in the measuring 
devices and errors in the physical constants which de- 
scribe the mathematical model. It is also necessary to 
consider more than one miss-component in order to com- 
pute the probability of impacting the target area. This 
general case can be treated in the manner presented 
above, however, by interpreting the variances associated 
with the idealized problem as being traces of certain 
combinations of covariance matrices. In this way a cor- 
responding one-dimensional problem is constructed. The 
justification for this approach will not be rigorously es- 
tablished, but it is intuitively clear that the guidance 
policy so constructed is reasonable. 

If I?; is the covariance matrix describing the error in 
the total estimate vector at ti, and if there are no correc- 
tions in the interval t;, t i + k ,  the covariance of the error 
in the total estimate vector at t;+k is (Ref. 8) 

k-1 

ri+k = + c~~ (39) C I=* 

where J ;  is the generalized inverse (normal matrix) of the 
covariance matrix describing the error in estimate due to 
observations gathered in the interval tj, If a cor- 
rection is accomplished at t i  the covariance matrix ri is 
replaced with (superscript T indicates transpose) 

where E [ 6vi Sv,] is the covariance added by the random 
velocity execution errors. Let m be the n-dimensional 

11 
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ONE SIGMA 
ERROR 
ELL1 PSE 

1 trace 
m components Pi = (44) 

i - 1  

*)i = trace [A;l + bJj]-' (45) 
] = a  m components 

&TARGET AREA 

& =  E [mf + m i ]  

Fig. 5. The two-dimensional target error 

target error vector that is to be nulled, and define the 
following relationships 

n: =Im: 1 (41) 

[ri 1 trace 
m components (1; = (43) 

The quantity E [ T ' ]  i can be determined for the general 
case by evaluating a multiple integral. If the variances of 
the individual components of the estimate of the target 
error at t ,  are all equal, it follows that 

where n = 1, 2, or 3 is the dimension of m, and k = 
J(n - 2)/21. With these relationships established, the anal- 
ysis proceeds as in the one-dimensional case. The two- 
dimensional case is pictured in Fig. 5. 

IX. APPLICATION OF THE GUIDANCE POLICY 

The guidance policy developed above was applied to a 
numerical example in order to demonstrate its effective- 
ness. The mathematical model describing the system was 
as given in Section 111, with the parameters defining the 
problem chosen so as to reasonably represent a typical 
Mars-approach guidance situation (Table 2). For example, 
the final time tl of approximately 15 hr before impact 
might correspond to the splitting off of an entry capsule 
from the spacecraft. To avoid a Monte-Carlo simulation, 
a k-sigma case was constructed by assuming that the 
estimated target error at each time ti was k times the 
standard deviation of the estimate (over the ensemble of 
all experiments). The switching function was computed 
by using this simulated value. Thus, initially the estimate 
would be zero (at to = 0); as tracking data were gathered 

12 

it would build asymptotically toward k (a,,)%, be cor- 
rected to zero at the first correction time, and the process 
then re-initiated with p;  replacing a,,. It was assumed 
that the correction capability initially was 20 m/sec; this 
number being chosen to adequately handle the 3-sigma 
case. The computer program developed to do this anal- 
ysis is described in Tables 1 and 3. For the computa- 
tions g(A) was approximated by 

g(A) = exp - ( 9 1 A  + 9.A') (47) 

where q1 = 1.5641 and 9. = 0.36336. The orbit deter- 
mination statistics, assuming no corrections, are described 
in Fig. 6. The results for the 0.1, 1, 2, and 3-sigma cases 
are presented in Table 4 and Fig. 7 thru 10. 
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Description Value 

Time from stort to impoct. loe sec 

V 

(a)% 

At 

Spocecraft speed 5 km/sec 

Standard deviation of a priori orbit 
determination error. le km 

Interval between decision times and 
tracking (stor) observations. 5 (10") rec 

uti 
lo-* rod 

Stondard deviation of noise on the 

tracking (star) observotions. 

Time from impoct at the final correction 

*r 1 opportunity. 

1000 

900 

800 

E 700 
r 

i 

9 
0 600 
I- 

2 500 
0 
n 
400 

z 
U t; 300 

200 

1 0 0  

0 

55 x Id scc 

TIME-TO-GO (r), thousands of sac 

UO 

UI 

Fig. 6. Standard deviation of estimate and error in 
estimate vs time-to-go, assuming no corrections 

Standard deviation of the proportional 

execution errors. 0.01 

Standard deviotion of the nonpropor- 

tional execution errors. 0.1 m/sec 

'able 3. Nomenclature for idealized guidance problem" 

correction capability (m/sec) 

variance of proportionol type of execution error 

(di mensionless) 

vorionce of nonproportionol type of execution error 

imj'ssxj' 

the sigma level of the simulated estimate 

minimum-variance-estimate of target error predicted 

at t, (kms) 

constants in the exponential approximation of g (h) 

final decision time (sec) 

time at i" decision point (sec) 

(constant) speed of the spocecroft toward the target 

(m/=c) 

velocity impulse correction perpendicular to direction 

of motion opplied at t.(m/sec) 

vorionce of error in the estimate my , ossuming no 

correction at t, (km)' 

variance of error in the estimate my, given a correction 

ot t, (km)' 

determination data in the interval It,, t,+,) (km)' 

variance of error in the estimate my+,, considering only orbit 

time between decision points (rec) 

some as q,, with tf replacing t, 

variance of error in the estimate m: , considering only orbit 

determination data in the interval (t,,, t t )  (kmf 

variance of error in the estimote m; , considering only orbit 

stondard deviation of uncorreloted noise on each angular 

observation of the (dimensionless) star angle (Fig. 1) 

determination data in the interval (ti, tr) (km)' 

time-to-go to closest opproach, evaluated at t, (sac) 

variance of the estimote m;, assuming a correction only ot t, 

vorionce of the error in the estimote m; ,assuming a correctioi 

only at 1, ond considering 011 orbit determination data (km) 

ond considering all orbit determination doto (km)' 

See Toble 3 for equations describing the qwntities definad hem. 

Table 4. Summary of results for four 
representative casesa 

8Totol correction apobility used constrained to be less than 20 m/-. 

I 

1 3  
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Fig. 7. The standard deviation of the estimate at t~ 
assuming a correction at T, for 1, 2 and 3 

signal levels 

TIM E- TO - G O ( r ) ,  thousands of sec 

Fig. 8. The residual error parameter vs time-to-go 

TIM E - TO -GO ( r  ).thousands of sec 

Fig. 9.  The switching function vs time-to-go for 
various sigma levels 
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x 50 
I 
4 

z 
& 40 

z 
3 
LL 

2 

z m  
I 
V 
k 

20 

IO 

0 100 200 300 400 500 600 7C 
0 

TIME-TO-GO(T), thousands of sec 

Fig. 10. A magnified view of the switching function for 
various sigma levels 
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X. DISCUSSION 

An adaptive guidance correction policy has been de- 
veloped which approximately minimizes the expected 
value of the squared target error, subject to the con- 
straint that the total propellant expenditure be less than 
some specified amount. This is a good criterion for mis- 
sions terminating at the final time, for then the best 
accuracy must be obtained-and there is no particular 
advantage in finishing with propellant left over. The 
scheme is simple enough for use in the real-time oper- 
ational situation. Although the analysis has been carried 
out only for the idealized case, an extension to the gen- 
eral case has been outlined. 

Computational difficulties inherent in the dynamic 
programming formulation of the problem have been 
eliminated by developing the policy in terms of the 
instantaneous state of the system. In order to accomplish 
this simplification it was assumed that either a total cor- 
rection or no correction is to be made at each decision time, 
and that a two-correction policy is to be employed. These 

restrictions are actually incorporated in present-day guid- 
ance logic for unmanned lunar and interplanetary space- 
craft, because each correction degrades the reliability of 
the spacecraft, disturbing it from the normal cruise mode 
and subjecting it to potential failures in the command and 
execution subsystem. The simulation results presented 
here verify that a minimum number of corrections are 
called for; indeed, only in the 3-sigma case are more 
than two corrections made. A theoretical discussion of 
the unrestricted case is given in Ref. 10 and 11. 

The result of following this optimal policy is not 
directly available from this analysis but must be obtained 
by computer simulation of the mission with Monte-Carlo 
selection of all random inputs which affect the trajectory. 
This is no real limitation of this method, however, for 
such simulations are usually performed in order to check 
any guidance logic. Further studies to evaluate this 
guidance technique with Monte-Carlo simulations are 
planned. 
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